PowerBuilder DataWindow/DataStore/DataWindowChild (except for Composite, Crosstab, OLE 2.0, and RichText styles) can exchange JSON data with RESTFul Web services.
The JSONGenerator object constructs the JSON objects by adding values, objects, or arrays. JSONParser object loads the JSON data from a string or from a TXT file into a JSON object. JSONPackage merges data in a JSON object and extracts data from the JSON object. The data to be merged can be from DataWindow/DataStore/DataWindowChild, or from an existing JSON. The resulted JSON can be posted from the client to the server via HTTPClient, or retrieved from the server to the client via RESTClient. And to import JSON to or export JSON from the DataWindow control, DataStore object, or DataWindowChild object, you can use the DataWindow ImportJson/ImportJsonByKey/ExportJson functions.
The HTTPClient object sends HTTP requests and receives HTTP responses from a resource identified by a URI. Compared to the Inet object, HTTPClient is easier to use and supports more methods (Get/Post/Put/Delete) and more SSL protocols (TLS 1.0, TLS 1.1, TLS 1.2, SSL 2.0, and SSL 3.0). RESTClient object accesses the RESTful Web APIs and loads the JSON string returned from the RESTful Web APIs into the DataWindow object. The JSON string returned from the RESTFul Web Service APIs must have no more than 2 levels, and the top-level must be arrays, the second-level must be objects.
For more information about these objects and their functions/events/properties, see
the section called “JSONPackage object” in Objects and Controls
the section called “JSONGenerator object” in Objects and Controls
the section called “JSONParser object” in Objects and Controls
the section called “HTTPClient object” in Objects and Controls
the section called “RESTClient object” in Objects and Controls
the section called “ImportJson” in DataWindow Reference
the section called “ImportJsonByKey” in DataWindow Reference
the section called “ExportJson” in DataWindow Reference
the section called “CompressorObject object” in Objects and Controls
the section called “ExtractorObject object” in Objects and Controls.
A plain JSON follows the industry standard JSON format (as specified in https://www.json.org) and has one of the following structures depending on the actual export/import scenario.
A plain JSON can only contain elements of the following 4 data types: integer, string, boolean, and null.
One-level structure
A one-level plain JSON string must have only one level (cannot be two or more) and must be an object (cannot be an array).
This format is supported by the following methods (For all formats supported by a particular method, see Applicable methods):
Here is an example of a one-level plain JSON string:
{ "column1":1, "column2":"name", "column3":true, "column4":null... }
Two-level structure
A two-level plain JSON must have its top-level as an array and the second-level as object(s) which represent a row of data.
[ SIMPLE-ROW1, SIMPLE-ROW2, SIMPLE-ROW3, SIMPLE-ROW4, SIMPLE-ROW5... ]
This format is supported by the following methods (For all formats supported by a particular method, see Applicable methods):
Object |
Method |
---|---|
DataWindow | ImportJson, ImportJsonByKey, ExportJson |
JSONPackage | GetValueToDataWindow, SetValueByDataWindow |
RESTClient | Retrieve, RetrieveOne, Submit |
Here is an example of a two-level plain JSON string:
[{"emp_id":1,"emp_fname":"Fran","emp_lname":"Whitney", & "street":"9 East Washington Street","city":"Cornwall"}, & {"emp_id":2,"emp_fname":"Matthew","emp_lname":"Cobb", & "street":"7 Pleasant Street","city":"Grimsby"}, & {"emp_id":3,"emp_fname":"Philip","emp_lname":"Chin", & "street":"539 Pond Street","city":"Oakville"}, & {"emp_id":4,"emp_fname":"Julie","emp_lname":"Jordan", & "street":"1244 Great Plain Avenue","city":"Woodbridge"}, & {"emp_id":5,"emp_fname":"Robert","emp_lname":"Breault", & "street":"358 Cherry Street","city":"Milton"}, & {"emp_id":6,"emp_fname":"Melissa","emp_lname":"Espinoza", & "street":"1121 Apple Tree Way","city":"Iroquois Falls"}, & {"emp_id":7,"emp_fname":"Jeannette","emp_lname":"Bertrand", & "street":"2090A Concord Street","city":"Waterloo"}, & {"emp_id":8,"emp_fname":"Marc","emp_lname":"Dill", & "street":"897 Hancock Street","city":"Milton"}, & {"emp_id":9,"emp_fname":"Jane","emp_lname":"Francis", & "street":"127 Hawthorne Drive","city":"Scarborough"}, & {"emp_id":10,"emp_fname":"Natasha","emp_lname":"Shishov", & "street":"151 Milk Street","city":"Grimsby"}, & {"emp_id":11,"emp_fname":"Kurt","emp_lname":"Driscoll", & "street":"1546 School Street","city":"Grimsby"}, & {"emp_id":12,"emp_fname":"Rodrigo","emp_lname":"Guevara", & "street":"72 East Main Street","city":"Fort Henry"}]
A DataWindow JSON is an object that contains elements representing the various aspects of a DataWindow.
This format is supported by the following methods (For all formats supported by a particular method, see Applicable methods):
Object |
Method |
---|---|
DataWindow | ImportJson, ImportJsonByKey, ExportJson |
JSONPackage | GetValueToDataWindow, SetValueByDataWindow |
RESTClient | Submit |
The structure of DataWindow JSON is as follows:
{ "identity": "70c86603-983b-4bd9-adbc-259436e43cbd", "version":1.0, "platform":"PowerBuilder", "mapping-method": 0, "dataobject":{"name":"d_example", "meta-columns": [COLUMN-META1, COLUMN-META2…], "primary-rows": [DW-STANDARD-ROW1, DW-STANDARD-ROW2…], "filter-rows": [DW-STANDARD-ROW1, DW-STANDARD-ROW2…], "delete-rows": [DW-STANDARD-ROW1, DW-STANDARD-ROW2…], "dwchilds":{"department_id": [SIMPLE-ROW1,SIMPLE-ROW2…], "category_id": [SIMPLE-ROW1,SIMPLE-ROW2…] … } } }
Elements |
Description |
---|---|
identity |
A string identifying the format. Should keep unchanged. |
version |
An integer specifying the format version. Currently it is 1.0. |
platform |
A string specifying the platform where JSON string is generated. Values are: PowerBuilder, C#. |
mapping-method |
An integer specifying the method for mapping columns. Values are:
Note: ImportJson function supports only 0 and 1, and ImportJsonByKey function and GetValueToDataWindow function ignore this value. |
dataobject |
An object indicating it is a DataWindow. |
name |
A string specifying the name of the DataWindow object (DataObject). |
meta-columns (optional) |
An array specifying the information of the DataWindow columns (excluding the computed columns). For elements about the column meta information, see COLUMN-META below. |
primary-rows (optional) |
An array specifying the data row in the DataWindow primary buffer. For elements about the DataWindow row, see DW-STANDARD-ROW below. |
filter-rows (optional) |
An array specifying the data row in the DataWindow filter buffer. For elements about the DataWindow row, see DW-STANDARD-ROW below. |
delete-rows (optional) |
An array specifying the data row in the DataWindow delete buffer. For elements about the DataWindow row, see DW-STANDARD-ROW below. |
dwchilds (optional) |
An object specifying the data in the DataWindowChild. The column name of the DataWindowChild is the key of dwchilds. The data row is SIMPLE-ROW. see SIMPLE-ROW below for more information. |
COLUMN-META is an object that contains elements representing the various aspects of the DataWindow column (but not the computed column).
{ "name": "department_id", "index": 1, "datatype": "long", "nullable": 0 }
name -- (required) a string specifying the name of the column.
index -- (required) an integer specifying the sequence order of the column. This value will be used to map with the DataWindow column when the mapping-method value is set to 1.
datatype -- (required) a string specifying the type of the column. This value is not used by import.
nullable -- (required) an integer specifying whether to allow a null value. 0 - a null value is not allowed, 1 - a null value is allowed.
DW-STANDARD-ROW is an object that contains elements representing the detailed information of the DataWindow row.
{ "row-status": 0, "columns":{"column1": [CURRENT-VALUE, COLUMN-STATUS, ORIGINAL-VALUE], "column2": [CURRENT-VALUE, COLUMN-STATUS, ORIGINAL-VALUE], ... } }
row-status -- (required) an integer specifying the status of the DataWindow row. 0 - NotModified!, 1 - DataModified!, 2 - New!, 3 - NewModified!.
columns -- (required) an object specifying the DataWindow column information including the current value, the column status, and the original value.
-
CURRENT-VALUE: (required) The current value of the column, in the following data type: integer, string, boolean, or null.
-
COLUMN-STATUS: (optional) An integer specifying the column status. 0 - (default) NotModified!, 1 - DataModified!.
-
ORIGINAL-VALUE: (optional) The original value of the column, in the following data type: integer, string, boolean, or null. The default type is null.
SIMPLE-ROW is an object that contains elements representing the simple information of the DataWindow row. The data must be in the following data type: integer, string, boolean, or null.
{ "column1":1, "column2":"name", "column3":true, "column4":null... }
Here is an example of a DataWindow JSON string:
{ "identity": "70c86603-983b-4bd9-adbc-259436e43cbd", "version": 1, "platform": "PowerBuilder", "mapping-method": 0, "dataobject": { "name": "d_employee", "meta-columns": [ { "name": "emp_id", "index": 0, "datatype": "long", "nullable": 1 }, { "name": "manager_id", "index": 1, "datatype": "long", "nullable": 1 }, { "name": "emp_fname", "index": 2, "datatype": "string", "nullable": 1 }, { "name": "emp_lname", "index": 3, "datatype": "string", "nullable": 1 }, { "name": "dept_id", "index": 4, "datatype": "long", "nullable": 1 }, { "name": "street", "index": 5, "datatype": "string", "nullable": 1 }, { "name": "city", "index": 6, "datatype": "string", "nullable": 1 }, { "name": "state", "index": 7, "datatype": "string", "nullable": 1 }, { "name": "zip_code", "index": 8, "datatype": "string", "nullable": 1 }, { "name": "phone", "index": 9, "datatype": "string", "nullable": 1 }, { "name": "status", "index": 10, "datatype": "string", "nullable": 0 }, { "name": "ss_number", "index": 11, "datatype": "string", "nullable": 1 }, { "name": "salary", "index": 12, "datatype": "decimal", "nullable": 1 }, { "name": "start_date", "index": 13, "datatype": "date", "nullable": 1 }, { "name": "termination_date", "index": 14, "datatype": "date", "nullable": 1 }, { "name": "birth_date", "index": 15, "datatype": "date", "nullable": 1 }, { "name": "bene_health_ins", "index": 16, "datatype": "string", "nullable": 0 }, { "name": "bene_life_ins", "index": 17, "datatype": "string", "nullable": 0 }, { "name": "bene_day_care", "index": 18, "datatype": "string", "nullable": 0 } ], "primary-rows": [ { "row-status": 1, "columns": { "emp_id": [ 102 ], "manager_id": [ 501 ], "emp_fname": [ "Fran" ], "emp_lname": [ "Whitney" ], "dept_id": [ 400, 1, 100 ], "street": [ "49 East Washington Street" ], "city": [ "Needham" ], "state": [ "MA" ], "zip_code": [ "02192 " ], "phone": [ "6175554321", 1, "6175553985" ], "status": [ "A" ], "ss_number": [ "017349033" ], "salary": [ 50000, 1, 45700 ], "start_date": [ "1994-02-26" ], "termination_date": [ null ], "birth_date": [ "1966-06-05" ], "bene_health_ins": [ "Y" ], "bene_life_ins": [ "Y" ], "bene_day_care": [ "N" ] } }, { "row-status": 0, "columns": { "emp_id": [ 129 ], "manager_id": [ 902 ], "emp_fname": [ "Philip" ], "emp_lname": [ "Chin" ], "dept_id": [ 200 ], "street": [ "59 Pond Street" ], "city": [ "Atlanta" ], "state": [ "GA" ], "zip_code": [ "30339 " ], "phone": [ "4045552341" ], "status": [ "A" ], "ss_number": [ "024608923" ], "salary": [ 38500 ], "start_date": [ "2005-08-04" ], "termination_date": [ null ], "birth_date": [ "1974-10-30" ], "bene_health_ins": [ "Y" ], "bene_life_ins": [ "Y" ], "bene_day_care": [ "N" ] } }, { "row-status": 3, "columns": { "emp_id": [ 104, 1, null ], "manager_id": [ 902, 1, null ], "emp_fname": [ "Chris", 1, null ], "emp_lname": [ "Young", 1, null ], "dept_id": [ 200, 1, null ], "street": [ "57 Carver Street", 1, null ], "city": [ "Concord", 1, null ], "state": [ "MA", 1, null ], "zip_code": [ "12345 ", 1, null ], "phone": [ "6185551234", 1, null ], "status": [ "A", 1, null ], "ss_number": [ "010123456", 1, null ], "salary": [ 63000, 1, null ], "start_date": [ "2018-05-06", 1, null ], "termination_date": [ null ], "birth_date": [ "1984-10-12", 1, null ], "bene_health_ins": [ "Y", 1, null ], "bene_life_ins": [ "Y", 1, null ], "bene_day_care": [ null ] } } ], "filter-rows": [ { "row-status": 0, "columns": { "emp_id": [ 148 ], "manager_id": [ 1293 ], "emp_fname": [ "Julie" ], "emp_lname": [ "Jordan" ], "dept_id": [ 300 ], "street": [ "144 Great Plain Avenue" ], "city": [ "Winchester" ], "state": [ "MA" ], "zip_code": [ "01890 " ], "phone": [ "6175557835" ], "status": [ "A" ], "ss_number": [ "501704733" ], "salary": [ 51432 ], "start_date": [ "2004-10-04" ], "termination_date": [ null ], "birth_date": [ "1959-12-13" ], "bene_health_ins": [ "Y" ], "bene_life_ins": [ "Y" ], "bene_day_care": [ "N" ] } } ], "delete-rows": [ { "row-status": 0, "columns": { "emp_id": [ 105 ], "manager_id": [ 501 ], "emp_fname": [ "Matthew" ], "emp_lname": [ "Cobb" ], "dept_id": [ 100 ], "street": [ "77 Pleasant Street" ], "city": [ "Waltham" ], "state": [ "MA" ], "zip_code": [ "02154 " ], "phone": [ "6175553840" ], "status": [ "A" ], "ss_number": [ "052345739" ], "salary": [ 62000 ], "start_date": [ "1994-07-02" ], "termination_date": [ null ], "birth_date": [ "1968-12-04" ], "bene_health_ins": [ "Y" ], "bene_life_ins": [ "Y" ], "bene_day_care": [ "N" ] } } ], "dwchilds": { "dept_id": [ { "dept_id": 100, "dept_name": "R & D" }, { "dept_id": 200, "dept_name": "Sales" }, { "dept_id": 300, "dept_name": "Finance" }, { "dept_id": 400, "dept_name": "Marketing" }, { "dept_id": 500, "dept_name": "Shipping" } ] } } }
The following table summarizes the methods that support the different JSON formats.
Objects |
Methods |
Supported JSON Formats |
---|---|---|
DataWindow |
ImportRowFromJSON, ExportRowAsJson |
1. Plain JSON: One-level structure |
ImportJson, ImportJsonByKey |
1. Plain JSON: Two-level structure 2. DataWindow JSON |
|
ExportJson |
1. Plain JSON: Two-level structure 2. DataWindow JSON |
|
JSONPackage |
LoadString, LoadFile |
1. An object which contains a set of key/value pairs where key is the name of a JSONObjectItem-type object and the value for the key is a string, object, or array in the following formats: plain JSON, or DataWindow JSON. |
GetValueToDataWindow |
1. Plain JSON: Two-level structure 2. DataWindow JSON 3. An object which contains a set of key/value pairs where key is the name of a JSONObjectItem-type object and the value for the key is a string, object, or array in the following formats: plain JSON, or DataWindow JSON. |
|
SetValueByDataWindow |
1. Plain JSON: Two-level structure 2. DataWindow JSON 3. An object which contains a set of key/value pairs where key is the name of a JSONObjectItem-type object and the value for the key is a string, object, or array in the following formats: plain JSON, or DataWindow JSON. |
|
RESTClient |
Retrieve |
1. Plain JSON: Two-level structure |
RetrieveOne | 1. Plain JSON: One-level structure & Two-level structure | |
Submit |
1. Plain JSON: Two-level structure 2. DataWindow JSON 3. An object which contains a set of key/value pairs where key is the name of a JSONObjectItem-type object and the value for the key is a string, object, or array in the following formats: plain JSON, or DataWindow JSON. |
See also
If the JSON string returned from the RESTFul Web Service is a two-level plain JSON string, you can directly use the RESTClient object to get the data, as shown below.
restclient lnv_restclient string ls_url long ll_row lnv_restclient = create restclient ls_url = "https://rest.appeon.test/getemployees" /* JSON string retruned from the url [ {"Id":1106,"First_name":"Vincent","Last_name":"Phillipino","Sex":"Male","Age":63}, {"Id":1107,"First_name":"Natalie","Last_name":"Mariano","Sex":"Female","Age":16}, {"Id":1108,"First_name":"Li","Last_name":"Mary","Sex":"Female","Age":36}, {"Id":1109,"First_name":"Vic","Last_name":"Lu","Sex":"male","Age":20} ]*/ ll_row = lnv_restclient.retrieve(dw_1,ls_url) destroy lnv_restclient messagebox("Restclient","The rowcount of dw_1 = "+string(ll_row))
If the JSON string returned from the RESTFul Web Service is not a perfect two-level plain JSON string, you may consider using the JSONPackage object to get the part of JSON string that is the plain JSON, and then use DataWindow ImportJson or ImportJsonByKey function to import the JSON data to the DataWindow.
string ls_value string ls_url string ls_json long ll_return,ll_row httpclient lnv_httpclient jsonpackage lnv_pack1,lnv_pack2 lnv_pack1 = create jsonpackage lnv_pack2 = create jsonpackage lnv_httpclient = create httpclient //Get the JSON string via httpclient ls_url = "https://test.appeon.com/getfood" ll_return = lnv_httpclient.sendrequest("Get",ls_url) if ll_return <> 1 then messagebox("Failed","SendRequest Failed:"+lnv_httpclient.getresponsestatustext( )) return end if lnv_httpclient.getresponsebody( ls_json) /* JSON string returned from the URL: '{ "id": "0001", "type": "donut", "name": "Cake", "ppu": 0.55, "batters": { "batter": [ { "id": "1001", "type": "Regular" }, { "id": "1002", "type": "Chocolate" }, { "id": "1003", "type": "Blueberry" }, { "id": "1004", "type": "Devil~'s Food"}, { "id": "5001", "type": "None" } ] } }'*/ //Load the JSON string via jsonpackage lnv_pack1.loadstring(ls_json) //Get the JSON string under key=batters ls_value = lnv_pack1.getvalue("batters") //Load the new JSON string via jsonpackage lnv_pack2.loadstring( ls_value) //Get the JSON data under key=batter (this json data meets the requirements by RestClient) ls_value = lnv_pack2.getvalue( "batter") //Import JSON data to the DataWindow via importjson dw_1.importjson(ls_value) destroy lnv_pack1 destroy lnv_pack2 destroy lnv_httpclient
If the JSON string returned from the RESTFul Web Service is not at the required format, for example, the top-level are not arrays, or item contains null values, you may consider using the JSONParser and HTTPClient objects to import the JSON data to the DataWindow.
string ls_json string ls_url string ls_error long ll_row,ll_return long ll_root,ll_object,ll_item long ll_loop1,ll_loop2 long ll_id,ll_data string ls_data,ls_key jsonparser lnv_jsonparser httpclient lnv_httpclient lnv_httpclient = create httpclient lnv_jsonparser = create jsonparser ls_url = "https://json.appeon.test/employees" //Get the JSON string via httpclient ll_return = lnv_httpclient.sendrequest("Get",ls_url) if ll_return <> 1 then messagebox("Failed","SendRequest Failed:"+lnv_httpclient.getresponsestatustext( )) return end if lnv_httpclient.getresponsebody( ls_json) /* JSON string returned from the URL: { "1106":{"First_name":"Vincent","Last_name":"Phillipino","Sex":"Male","Age":63}, "1107":{"First_name":"Natalie","Last_name":"Mariano","Sex":"Female","Age":16}, "1108":{"First_name":"Li","Last_name":"Mary","Sex":"Female","Age":36}, "1109":{"First_name":"Vic","Last_name":null,"Sex":"male","Age":20} }*/ //Loads the JSON data via jsonpaser ls_error = lnv_jsonparser.loadstring(ls_json) if len(trim(ls_error)) > 0 then Messagebox("Failed","Load json failed:"+ls_error) return end if //Obtains the handle of root item ll_root = lnv_jsonparser.getrootitem( ) //Obtains the each row in a loop for ll_loop1 = 1 to lnv_jsonparser.getchildcount(ll_root) ll_row = dw_1.insertrow(0) //Obtains ID ll_id = long(lnv_jsonparser.getchildkey(ll_root, ll_loop1)) dw_1.setitem( ll_row,"id", ll_id) //Obtains the other column data in a loop ll_object = lnv_jsonparser.getchilditem( ll_root, ll_loop1) for ll_loop2 = 1 to lnv_jsonparser.getchildcount( ll_object) ll_item = lnv_jsonparser.getchilditem( ll_object, ll_loop2) ls_key = lnv_jsonparser.getchildkey( ll_object, ll_loop2) //Obtains the data type of each item choose case lnv_jsonparser.getitemtype( ll_item) case jsonarrayitem!,jsonobjectitem!,jsonnullitem! //ignores array, object and null item case jsonstringitem! ls_data = lnv_jsonparser.getitemstring(ll_object,ls_key) dw_1.setitem(ll_row,ls_key,ls_data) case jsonnumberitem! ll_data = lnv_jsonparser.getitemnumber(ll_object,ls_key) dw_1.setitem(ll_row,ls_key,ll_data) case jsonbooleanitem! //handles boolean as string ls_data = string(lnv_jsonparser.getitemboolean( ll_object,ls_key)) dw_1.setitem(ll_row,ls_key,ls_data) end choose next //Finish processing one row next//Start processing next row destroy lnv_jsonparser
The HTTPClient object sends a request with a header "Accept-Encoding:gzip" which informs the RESTFul Web service that the client can extract data; then the Web service returns a compressed package and a response header "Content-Encoding: gzip" which indicates that the data is compressed; and then the ExtractorObject object extracts data from the package.
HttpClient lhc_Client ExtractorObject lnv_extractor String ls_Url, ls_id, ls_Method, ls_Body, ls_Respose Long ll_rtn Blob lb_body, lb_Extr Boolean ib_comp lnv_extractor = Create ExtractorObject lhc_Client = Create HttpClient ls_Url = "https://demo.appeon.com/pb/webapi_client/department" ls_Method = "GET" lhc_Client.timeout = 10 lhc_Client.SetRequestHeader ( "Content-Type", "application/json" ) lhc_Client.SetRequestHeader("Accept-Encoding", "gzip") ll_rtn = lhc_Client.sendrequest( ls_Method, ls_Url ) If ll_rtn = 1 Then ls_Respose = lhc_Client.Getresponseheaders( ) If Pos (ls_Respose, "Content-Encoding: gzip" ) > 0 Or Pos ( ls_Respose, "gzip" ) > 0 Then ib_comp = true End If If ib_comp Then // Extract the package ll_rtn = lhc_Client.GetResponsebody(lb_Body) If ll_rtn = 1 Then ll_rtn = lnv_extractor.Extract(lb_body, lb_Extr, ArchiveFormatGZip!) If ll_rtn = 1 Then ls_Body = String ( lb_Extr,EncodingUTF8! ) MessageBox ( "Extract Success", ls_Body ) Else MessageBox ( "Extract Failed", "return:" + String (ll_rtn) ) End If Else MessageBox ( "GetResponsebody Failed", "return:" + String (ll_rtn) ) End If else // Extraction did not happen ll_rtn = lhc_Client.GetResponsebody( ls_Body,EncodingUTF8!) MessageBox ( "No Extract", ls_Body ) End IF Else MessageBox ( "SendRequest Failed", "Return:" + String ( ll_rtn ) ) End If If IsValid (lnv_extractor) Then Destroy ( lnv_extractor ) If IsValid (lhc_Client) Then Destroy ( lhc_Client )
The RESTClient object sends a request with a header "Accept-Encoding:gzip" which informs the RESTFul Web service that the client can extract data; then the Web service returns a compressed package and a response header "Content-Encoding: gzip" which indicates that the data is compressed; and then the RESTClient object retrieves data from the compressed package.
RestClient lrc_Client String ls_Url, ls_Method Long ll_rtn lrc_Client = Create RestClient ls_Url = "https://demo.appeon.com/pb/webapi_client/department" ls_Method = "GET" lrc_Client.SetRequestHeader ("Content-Type", "application/json") lrc_Client.SetRequestHeader("Accept-Encoding", "gzip") ll_rtn = lrc_Client.Retrieve( dw_1,ls_Url ) If ll_rtn >= 0 And lrc_Client.GetResponseStatusCode() = 200 Then MessageBox( "Retrieve Success","Rows:" + String ( ll_rtn )) Else MessageBox( "Retrieve Failed","Rows:" + String ( ll_rtn )) End If If IsValid (lrc_Client) Then Destroy ( lrc_Client )
The OAuthClient object sends a request with a header "Accept-Encoding:gzip" which informs the RESTFul Web service that the client can extract data; then the Web service returns a compressed package and a response header "Content-Encoding: gzip" which indicates that the data is compressed; and then the ExtractorObject object extracts data from the package.
OAuthRequest loa_Request OAuthClient loa_Client ExtractorObject lnv_extractor ResourceResponse lrr_Response Integer li_rtn Long ll_rtn String ls_Body,ls_Response,ls_Token Blob lb_body, lb_Extr Boolean ib_comp lnv_extractor = Create ExtractorObject loa_Client = Create OAuthClient ls_Token = "eyJhbGciOiJSUzI1NiIsImtpZCI6IjE1NDZjNzliNzkyODVmYTJmMzZjY2Q3Mzg1OGE4MjY3IiwidHlwIjoiSldUIn0.eyJuYmYiOjE1NDQ0MzMzMzAsImV4cCI6MTU0NDQzNjkzMCwiaXNzIjoiaHR0cDovL2NzaGFycHNlcnZlci5hcHBlb24uY29tOjYwMDAiLCJhdWQiOlsiaHR0cDovL2NzaGFycHNlcnZlci5hcHBlb24uY29tOjYwMDAvcmVzb3VyY2VzIiwiQXBwZW9uQXBpIl0sImNsaWVudF9pZCI6ImNsaWVudCIsInN1YiI6ImN1c3RvbV9jb2RlIiwiYXV0aF90aW1lIjoxNTQ0NDMzMzMwLCJpZHAiOiJsb2NhbCIsInNjb3BlIjpbIkFwcGVvbkFwaSJdLCJhbXIiOlsiY3VzdG9tX2NyZWRlbnRpYWxzIl19.XlGwMqVRwJ_4gkIbNaK_HX6_0hvWE0EJXciurkNjqdOZegF_QQYTJp3jBA1idtMC_lB24TurZM1JSfbTXv4ZSQVdCTk3p5kyV8UTqpDUKbu73HQoPNDlXuTyQb58rGVRGC4bp7weLlpUqrQT2OB8PT2N_JCWtTnrwNToNsc4H1e2NNvNUoe90May7ICs2ovofQ37FQG7IwLSoe_aUsS-8togNxQ1SxsdR7__Amb0G0Asu8QaRTIzomerDGX9Ct_yt6cgz-3Z7jR9Eb1QFaZxr_PALwMVIHVmHJK58GCePGQ0nivJCYMO4WEhysme_Thics4cx_EKl4T8t0VHmcqCNw" loa_Request.SetHeader("Accept-Encoding", "gzip") li_rtn = loa_Request.SetAccessToken (ls_Token) loa_Request.Method = "GET" loa_Request.Url = "https://demo.appeon.com/pb/webapi_client/identity/departments" li_rtn =loa_Client.RequestResource( loa_Request, lrr_Response ) If li_rtn = 1 Then ls_Response = lrr_Response.getheaders( ) If Pos (ls_Response, "Content-Encoding: gzip" ) > 0 Or Pos ( ls_Response, "gzip" ) > 0 Then ib_comp = true End If If ib_comp Then // Extract the package ll_rtn = lrr_Response.getbody( lb_body) If ll_rtn = 1 Then ll_rtn = lnv_extractor.Extract(lb_body, lb_Extr,ArchiveFormatGZip!) If ll_rtn = 1 Then ls_body = String ( lb_Extr,EncodingUTF8! ) MessageBox( "Extract Success", String ( Len ( ls_body ) ) ) Else MessageBox( "Extract Failed", "return:" + String (ll_rtn) ) End If Else MessageBox( "Getbody Failed", "return:" + String (ll_rtn) ) End If else // Extraction did not happen ll_rtn = lrr_Response.getbody( ls_Body) MessageBox( "No Extract", ls_Body ) End IF Else MessageBox ( "RequestResource Failed","RequestResource Return:" + String ( li_Rtn ) ) End If If IsValid ( loa_Client ) Then Destroy ( loa_Client ) If IsValid ( lnv_extractor ) Then Destroy ( lnv_extractor )