

Whitepaper:

DEPLOYING
POWERBUILDER APPS TO
THE CLOUD

Last Updated: December 4 2020

Appeon Whitepaper: Deploying PowerBuilder Apps to the Cloud

Copyright © Appeon www.appeon.com Page 2 of 6

INSTALLABLE CLOUD APPS
The new generation of PowerServer (PowerServer 2021) enables you to automatically deploy

PowerBuilder projects as “installable cloud apps”. The apps are installable on desktops or pads. Cloud

meaning the database and the database-related operations residing in the cloud (rather than on-premise)

with automatic deployment of the client to users over the Internet. In other words, you can think of

“installable cloud apps” as the modern desktop app that requires Internet connection to install and run.

POWERSERVER 2021 CHANGES
PowerServer 2021 replaces the Web browser implementation of the older generation PowerServer with

an installable cloud app implementation. This replacement of the previous implementation is much more

powerful, offering the following key advantages.

• Essentially 100% of PowerBuilder features are supported. This is now possible because

PowerServer 2021 no longer translates to JavaScript (e.g. Web app) and instead natively uses

PowerScript (e.g. desktop app).

• Installable cloud apps are Internet-installable applications. An installable cloud app will be

initially installed by accessing the app URL in a web browser. After that, the app has no

dependency on a web browser (type, version, or settings) but will run and update itself as

needed over the Internet.

• Communication between the desktop and the server is through standard REST/JSON interface

(instead of previously the proprietary binary format). Since this is standard REST/JSON, it can be

secured using whatever approach you like, for example, OAuth 2.0 for user authentication and

AES encryption to protect the JSON data.

• .NET Core is now supported. This changes the landscape for .NET in 3 major ways: 1) it supports

cross-OS (e.g. Linux server), 2) the server-side performance is faster, and 3) Microsoft redesigned

from the ground up to be cloud-deployable (including Docker compatibility and side-by-side

versioning).

• The product license activation mechanism has been revised for cloud compatibility, and even

supports serverless options such as Amazon Lambda and Azure Functions.

The key tradeoff of this change to the installable cloud app implementation is that PowerServer 2021 can

no longer support iOS and Android devices. This is because PowerScript is only supported by the Windows

OS.

Appeon Whitepaper: Deploying PowerBuilder Apps to the Cloud

Copyright © Appeon www.appeon.com Page 3 of 6

POWERSERVER ARCHITECTURE COMPARISONS

PowerBuilder Client/Server Architecture:

Previous PowerServer Architecture:

Appeon Whitepaper: Deploying PowerBuilder Apps to the Cloud

Copyright © Appeon www.appeon.com Page 4 of 6

PowerServer 2021 Architecture:

How PowerServer 2021 works?

• PowerServer 2021 adopts a REST API approach. Specifically, the desktop application code is

powered by REST APIs that interface with the data sources, and such REST APIs can be hosted in

a public or private cloud.

• It is possible to configure load balancing between multiple PowerServer instances. Every

PowerServer instance will host both the REST API (referred to as API Server) and the data

processing (referred to as Data Server).

• In case of multiple PowerServer instances, sticky sessions will be used to preserve transaction

integrity. Specifically, all the requests in one transaction will to be handled by the same server

instance.

INSTALLABLE CLOUD APP DEPLOYMENT

Application compilation

Traditionally, when you compile a PowerBuilder application using p-code, PowerBuilder builds

PowerBuilder dynamic libraries (PBD files). The PBD files contain everything, such as visual objects,

DataWindows/DataStores, PowerScript code, and embedded SQL. All the PBD files must be installed to

the desktop and work together to get the application running.

The compilation of installable cloud apps is different from the traditional p-code approach:

• The data access now executes on the server instead of the desktop:

Appeon Whitepaper: Deploying PowerBuilder Apps to the Cloud

Copyright © Appeon www.appeon.com Page 5 of 6

o All DataWindows/DataStores are automatically converted to .NET models, and then

automatically exposed via REST/JSON APIs.

o All embedded SQLs will be deployed to the server side, and then automatically exposed

via REST/JSON APIs.

• All PowerScript and all other objects (besides DataWindows/DataStores) continue to execute on

the desktop. In other words, the application business logic written in PowerScript is not

automatically partitioned by PowerServer.

• Although it is unnecessary to partition the business logic for installable cloud apps, if you desire

to reuse the application business logic elsewhere, or optimize the overall application

performance, the PowerScript Migrator product can highly-automate the conversion of such

business logic to REST/JSON APIs.

• All PBD files are broken down very granularly into each individual object/definition file. For

example, each SRW, SRD, SRU, etc. file would have its individual corresponding p-code file (that

have new file extensions, such as .dwo, .apl, .fun, .win, .udo) instead of a monolithic PBD files.

Then each version of every p-code file has a unique identifier so that when a user runs the

installable cloud app the p-code files can be incrementally downloaded and updated, depending

on the window and functionality the user is accessing.

So you will see that with the new compilation approach, it is enhancing PowerBuilder compilation to not

only support a client/server model but to also support a cloud model. Simply put, data access is

automatically moved from the desktop to the cloud, and the application installation is redesigned to work

efficiently over the Internet, providing the key changes necessary to deploy existing client/server projects

to the Cloud.

Application deployment

Deployment to the Web server

After the app compilation, the following two types of files will be deployed to the Web server:

• P-code files that are granular in size (not the monolithic PBD format).

• The application .exe file and supporting files such as resource files, OCX files and desktop runtime

files (e.g. PBVM). Such files are the same as in client/server PowerBuilder applications. There will

be dedicated configuration settings for you to specify these supporting files that will be packaged

and deployed with the application to the desktop.

Although a Web server is used, technically it is acting as a file server (i.e. no code executes on the Web

server).

Deployment to PowerServer

The following two types of files are converted from DataWindows/DataStores/embedded SQLs, deployed

to PowerServer, compiled together with necessary server DLLs, and published as .NET Core applications

(REST APIs).

• .NET models;

• SQLs.

https://www.appeon.com/products/powerscript-migrator

Appeon Whitepaper: Deploying PowerBuilder Apps to the Cloud

Copyright © Appeon www.appeon.com Page 6 of 6

Client deployment

Installable cloud apps are Internet-installable applications. An installable cloud app will be initially installed

by accessing the app URL in a web browser. After that, the app has no dependency on a web browser

(type, version, or settings) but will run and update itself as needed over the Internet.

KEY MANUAL TASKS
PowerServer is a highly-automated cloud deployment solution that requires very little code changes.

However, there are a few key tasks that is not automatically handled, requiring manual programming

effort:

• User authentication. It is possible for installable cloud apps to apply OAuth2.0 authentication.

Some settings will be provided after the application deployment for configuring the user

authentication strategy for the application.

• Connection to the database. The SQLCA settings will be configured for the PowerServer as data

source settings and dynamic database connection settings, which establishes the connection

between the PowerServer and the database.

